

Portable Data Integrity and Confidentiality using Graduated Access Control

Puneet Mehrotra, Amanda Carbonari, Peter Chen, Ivan Beschastnikh, Andrew Warfield

Network, Systems, and Security Lab CS@UBC

Motivating Example

© Vantagenews.co.uk

What could go wrong?

Dropbox gets compromised

Curious eyes in public spaces

Changed circumstances – lost/stolen device Bob's data is mobile, Bob's data access policy is **NOT**

Problem 1: distribution of the data and the data access policy are synonymous and binary

Problem 2: data access policy on remote devices (e.g., Alice's phone) may be inadequate or not enforced

Access Policies Today

- Depend only on the application and device it is on
- Evaluated at time of distribution
- Binary decision at time of sharing (can/cannot)

Enforceable access policies for mobile data

Graduated Access Control on Remote Devices

S Alle at nome?

Mobile Dynamically Resolvable Programmable Backward Compatible

Benefits

Droplade getseompromised and encrypted

CBarbgeon circountestaneeske acdost/stollesnptevioe

Curious e Sessin public spaces n access his data and where

Usecases

Identity Protection

Revocation: remote delete, auto delete, policy change, remote state change

Data integrity and Provenance

Detect tampered data, audit trails

Electronic Health Records Audit trails, role-based access

Sensitive Documents

Redaction, geo-fencing, time-fencing, role-based access

OurSolution

- Data centric abstraction of graduated access control
- Data and Policy encrypted together in a single mobile unit : Trusted Capsule

Our Solution : Trusted Execution Environment

Secure	Normal
World	World
Trusted Application	Application
Secure World OS	Normal World OS (Linux)
Sec	ure
Mor	itor

- Examples include Intel Secure
- Where Atensises & And Anterceptor to allow
- applications to Available on commodity ARM transparently operate on chipsets trusted capsules
- Hardware partitions CPU and
- Seenbeyweldwolfersaie foortdustedicapsulermal

applications to evaluate

• Eapperentising Narsyst Aprild does not compromise Secure World

Our Solution: Trusted Capsule Server

- Maintain data owner policy uniform across all trusted capsule copies
- Actions:
 - Receive logging information from trusted capsules
 - Initiate policy change (ex: Remote delete)

Our Solution: Policy Engine

```
-- API keywords
1
  policy version = 0
   remote server = "10.0.0.2:3490"
   -- log
   log open = true
6
   log close = true
9
   -- return keywords
    policy result = POLICY ALLOW
11 comment = ""
12
13 -- policy-specific keywords
14 replace var1 = "THIS IS A SECRET"
15
16
17 function evaluate policy ( op )
18
19
   err = redact( 12, 20, "replace var1"
20
   if err ~= POLICY NIL then
21
         policy result = err
22
         return
23
    end
24
25
    if op == POLICY OP OPEN then
    elseif op == POLICY OP CLOSE then
26
27
    else
28
         policy result = POLICY ERROR UNKNOWN OP
29
         comment = "Unknown Operation"
30
    end
31 end
```

- Lua based policy language
- Global variables trusted server IP and port
- States
 - Normal world OS states ex: process ids
 - Peripheral device information
 - Remote states
- Evaluates policy on *op* where op is the system call

Implementation

Samsung Knox uses ARM TrustZone

- Prototype on LeMaker HiKey
 - ARM Cortex A53 processors
 - 8 GB eMMC Flash
 - 2 GB RAM
 - TrustZone unlocked
- Linaro OP-TEE OS version 1.0 (Secure World)
- Debian Linux Kernel 3.18.0 (Normal World)
- 128-bit AES and SHA-256 (Trusted Capsules)

Evaluation – Policy Language

Policy	LOC
Merger Document	24
Transcript	25
Royal Photo	30
EHR	41

Agreement To Merge
between
<u>###############</u>
and
<u>###################</u>
under the charter of
<u>########################</u>
under the title of
<u> ************************************</u>

- Express all our use case policies with small LOCs
- Complex policies such as redaction can be expressed with few lines of code
- Lua interpreter required <2KB of stack

Evaluation – Storage Overhead

	Data (KB)	Capsule (KB)	Overhead (%)
PDF Doc	137.34 KB	139.38 KB	1.42%
JPEG Image	204.10 KB	207.00 KB	1.42%
MP4 Video	4142.40 KB	4175.94 KB	0.80%
FODT Doc	54.80 KB	56.70 KB	3.47%

• Negligible storage overhead

Conclusion

- Current day policies are application/device-centric, evaluated once, binary and unchangeable
- We introduce graduated access control
 - Data owner can enforce access policies on remote devices
 - Define a continuum of actions rather than a binary can/cannot
 - Decouples access policy from data distribution

Trusted capsules based implementation using ARM TrustZone as our TEE

o Mobile

0

0

- Dynamically Resolvable
- Programmable

Graduated Access Control on Remote Devices

- Mobile data access policy moves with the data
- **Dynamically Resolvable** data access policy re-evaluated at time of access
- **Programmable:** data access policy is nuanced
- **Backward Compatible:** does not require application modification

