
Detection and Mitigation of Security Vulnerabilities
Anna Scholtz

University of British Columbia
ascholtz@cs.ubc.ca

Puneet Mehrotra
University of British Columbia

puneet89@cs.ubc.ca

Gleb Naumenko
University of British Columbia

naumenko@cs.ubc.ca

ABSTRACT
Many code bases rely on outdated dependencies or use functions
that might pose security risks. Fixing these issues requires substan-
tial knowledge and e�ort from the developers, which are often not
available. Our study attempts to provide best practices to approach
this challenge by answering a set of research questions. In this pa-
per, we present Revelio, an open source tool that can automatically
detect dependencies and functions with security risks in Python
code, suggest safe alternatives, and informs the developer about
potential errors. Using Revelio, we analyzed several projects on
GitHub and evaluated the usability and usefulness of our solution
in a user study.

CCS CONCEPTS
•D.2.8 [Software Engineering]: DesignTools andTechniques
- Software libraries;

KEYWORDS
Vulnerabilities, Security, Python, GitHub

1 INTRODUCTION
Security is an important aspect of software design. As stated in
recent reports [16], insecure programs still provide signi�cant loss
to companies around the world. Credit Union National Association
claims that in less than �ve years, the annual cost of data breaches at
the global level will skyrocket to $2.1 trillion [10]. In addition to the
�nancial aspect, there is another one – users’ private information.
In accordance with Vigilante.pw [13], more than 2100 websites had
their databases breached, containing over 2 billion user entries in
total.

Modern software security paradigms make it challenging for
developers to maintain their programs secure. To do so, developers
have to be familiar with up-to-date security techniques, vulnera-
bilities and periodically update their software. As is often the case,
developers lose awareness of the libraries or functions they use if
they do not work on a project for too long [15]. Also, many devel-
opers are not aware of the security vulnerabilities in the libraries
they use, do not know how to apply �xes or might lack relevant
information about vulnerabilities [11]. In general, it is tedious to
manually look for updates, and one must remember to do so in the
�rst place. In the absence of active monitoring of the project, its
dependencies can stay undetected and outdated for long periods
of time, increasing the risk of an attack. These problems can be
alleviated with tools that notify the developers of the outdated
dependencies in their code, suggest alternative safe methods, look
for updates and help with the application of �xes.

In this paper we focus on security risks that correlate with the
“Top 4 Common Web Security Vulnerabilities”, recently published
by TheMerkle.co [12]: weak cryptographic algorithms (e.g. SHA1),

weak cryptographic parameters (e.g. RSA with key length of 1024),
code injection, �le hijacking and outdated dependencies. The �rst
two risks are especially important in the context of cryptogra-
phy [14].

We propose Revelio, which is a tool helping software developers
to �nd and update vulnerabilities in their programs. Revelio should
be able to:
• Statically identify locations where the developer has used
deprecated or unsafe methods in the code and replace it with
safe alternatives
• Detect and update outdated dependencies
• Dynamically run the projects own tests to check whether an
update or the usage of a safe alternative breaks the code
• Update existing projects via GitHub pull requests
• Identify vulnerabilities during the design phase via an IDE
plugin

By running Revelio against existing GitHub projects and conduct-
ing a user survey, we are trying to answer the following research
questions:

R1 Can static or dynamic analysis be used to detect vulnerabil-
ities and to verify if the code still runs after an update or
modi�cation?

R2 How many popular projects have dependencies that pose
security risks?

R3 What are the most commonly detected vulnerabilities?
R4 Howmany of the suggested changes were developers willing

to implement?
R5 How useful do developers �nd the IDE plugin while writing

code?
The rest of this paper is organized as follows: we describe the

implementation and usage of Revelio in Section 2. Next we evalu-
ate Revelio by conducting a pull-request study and user study in
Section 3 and discuss the results in the same section. We �nish the
paper with related work in Section 5, future work in Section 6 and
a conclusion in Section 7.

2 REVELIO
Our tool has been designed to meet the previously de�ned require-
ments. It statically identi�es locations where the developer has
used deprecated or unsafe methods in the code and suggests safe
alternatives. It runs tests to check whether the code is broken and
needs attention and can update outdated dependencies.

We chose Python as the primary programming language for im-
plementing our tool since our focus is on detecting vulnerabilities
in Python projects. The reasons for why we chose Python are man-
ifold: First, a huge amount of software is implemented in Python.
On GitHub alone around 2.5 million Python projects are hosted [5].
It is quite likely that many of these projects are used in a context
where security is important and potential vulnerabilities might

Final Report CPSC 507, 2018, Vancouver, Canada Anna Scholtz, Puneet Mehrotra, and Gleb Naumenko

have a large negative impact. Second, various libraries for parsing
and analyzing code are already available and can be integrated into
our tool. Third, a wide range of known vulnerabilities in Python is
already available on various security related websites [3] [1].

The tool is based on Python 3 and can currently be used as
a plugin for Sublime Text [9] or as a standalone command-line
tool. It can analyze Python �les that are either stored on the local
machine or available in a GitHub repository. The output is a report
about detected vulnerabilities, outdated dependencies, vulnerable
dependencies and executed tests. In the following, we will give a
general overview of the tool architecture and detailed descriptions
of the most relevant components.

2.1 Implementation
A general overview of the components Revelio is composed of is
shown in Figure 1. Revelio can be started using the command-line
or by using our plugin that integrates it into Sublime Text. The
command-line interface provides options for analyzing �les stored
on the local machine as well as GitHub repositories. For working
with GitHub repositories it is required to provide the URL to the
repository. Github Repo Handler will automatically clone the
repository into a temporary directory. Once all �les are locally
available the vulnerability analysis will be executed.

Figure 1: Simpli�ed architecture of Revelio

Vulnerability Analyzer implements the core functionality.
This component detects vulnerable functions as well as vulnera-
ble dependencies and optionally replaces vulnerable functions if

replacement suggestions are available. For this, it relies on known
vulnerabilities and known vulnerable dependencies that are stored
in databases. These databases are currently maintained manually.
They contain information about the severity of a vulnerability, the
reason for why it is not secure and, optionally, secure replacements
as shown in Listing 1. At the time of writing, we identi�ed 21 vul-
nerable functions1. For detecting vulnerable dependencies, we use
Safety DB2 which is an open source database providing information
about insecure versions of Python dependencies.

1 [. . .]
2 " yaml . l o ad " : {
3 " s e v e r i t y " : " c r i t i c a l " ,
4 " type " : " p i c k l e " ,
5 " upda te_wi th " : " yaml . s a f e _ l o a d (___0) " ,
6 " r ea son " : " Un t ru s t ed i npu t can r e s u l t
7 in a r b i t r a r y code e x e cu t i on . "
8 } ,
9 [. . .]

Listing 1: Entry in the vulnerability database

Once the analysis is done, Revelio can check for and update
outdated dependencies. Furthermore, it can automatically execute
the projects own tests, if available. This is especially useful to make
sure replacing vulnerable functions or updating dependencies does
not break the code. However, these steps can also be skipped and
are currently only available through the command-line interface.
Revelio provides several options for generating di�erent reports
containing the vulnerability, update and test results: reports are
available as HTML or plain text printed to the command line. When
using the Sublime plugin, vulnerabilities will be highlighted inline
with additional information. Furthermore, for GitHub repositories,
Revelio can automatically create pull-requests which replace vul-
nerabilities with safe alternatives and provide more security-related
information.

2.1.1 Detecting Vulnerable Functions. Vulnerable functions are
uniquely identi�ed using their full name including module and
submodule names (cf. Listing 1 line 2). However, the naive approach
of performing a plain-text search using this identi�er to detect
vulnerabilities in �les does not work in Python. The reason for
this is that in order to access code in other modules or external
packages, these dependencies need to be imported. Python allows
to import speci�c names of a module, as shown in Listing 2 on line
1, and to de�ne aliases for imported modules (cf. Listing 2 line 2).
Both of these methods do not introduce the module name from
which the imports are taken in the local symbol table. Therefore,
developers will use the aliases as well as shortened names in their
source code making it impossible to match with the identi�ers in
the database.

Instead, Revelio performs its analysis on the AST (abstract syntax
tree) of the Python code. The �rst step is to extract all function calls
from the Python �le to be analyzed. Thiswill not only extract the full
names but also the location in the �le. Next, all import statements
are determined including aliases. These contain the names of the
modules and submodules which can be used to correlate which
1https://github.com/scholtzan/cpsc-507/blob/master/src/data/crypto.json
2https://github.com/pyupio/safety-db

https://github.com/scholtzan/cpsc-507/blob/master/src/data/crypto.json
https://github.com/pyupio/safety-db

Detection and Mitigation of Security Vulnerabilities Final Report CPSC 507, 2018, Vancouver, Canada

1 from Crypto . Hash impor t SHA
2 from Crypto . C ipher impor t ARC4 as A
3
4 de f main () :
5 # [. . .]
6 hash1 = h a s h l i b . md5 ()
7 # [. . .]
8 c i p h e r = A . new (' tempkey ')
9 h = SHA . new ()

Listing 2: Usage of vulnerable functions in Python

module provides each function. This way the full function name
consisting of module and submodules can be determined and in
the next step compared to the known vulnerable functions. At the
end of this step, Revelio will have a list of vulnerabilities for each
analyzed Python �le.

2.1.2 Replacing Vulnerabilities with Safe Alternatives. Revelio
o�ers to replace vulnerable functions with safe alternatives. Af-
ter the vulnerable functions have been detected and their exact
locations have been determined, Revelio will iterate through the
Python AST and replace these function calls, if safe alternatives
are available. These alternatives are again stored in the database
and need to be written as valid Python code (cf. Listing 1 line 5).
It is also possible to de�ne which function parameters should be
used in the replacement. For this, parameters are identi�ed by their
location in the parameter list and followed by “___”. For example,
in line 5 in Listing 1, ___0 indicates that the �rst parameter should
be used in the replacement function as the �rst parameter. Finally,
Revelio will write the modi�ed Python AST back to the �le.

2.1.3 Detecting Vulnerable Dependencies. The standard way to
handle dependency management in Python is specifying require-
ments in a requirements.txt �le. While it is widely accepted as
a best practice, it is scarcely enforced. There is no one tool like
Maven3 for Java that handles the many diverse ways in which
people handle project dependencies and packaging. This variation
and lack of consensus on best practices can make it challenging
to detect what dependencies are used and handle the dependency
upgrading.

To tackle this challenge, Revelio will only look at import state-
ments in the code. All packages that are used in the code need to be
imported at some point and thus allows retrieving all dependencies
used in the code. To determine if a project uses vulnerable depen-
dencies, Revelio �rst extracts all import statements and compares
the imported modules to the database containing information about
vulnerable dependencies. For each vulnerable dependency, Revelio
will return the versions that are insecure as well as a reason for the
insecurity. Project maintainers can use this information to inform
users about the dependency versions they should avoid.

2.1.4 Detecting Outdated Dependencies. Checking whether de-
pendencies are outdated is done by extracting imports from the
AST and then using the package management system pip4 to de-
termine the currently installed version. Next, pip can retrieve all
available versions of a module of which the newest will be installed.
3https://maven.apache.org/
4https://pypi.python.org/pypi/pip

Revelio will run available tests to check if the update breaks the
code. If tests fail that were executed successfully before the update,
then Revelio will go back to the old version of the dependency. Cur-
rently, it is possible to update all outdated dependencies at once or
to incrementally update and check if the code still runs. The latter
option, however, might be very time-intensive since executing all
tests over and over again can take a signi�cant amount of time.

2.1.5 Testing. Tests are optionally executed after insecure func-
tions have been replaced with safe alternatives or outdated depen-
dencies have been updated. There are several testing frameworks
that exist for the Python ecosystem, however, there are clear fa-
vorites that exist among the developer community. From a prelim-
inary search on GitHub, we determined that pytest5, nose6, and
unittest7 are the most commonly used. Each of these testing frame-
works has their own unique ways to organize, discover, and run
tests [4] [2]. While this divergence is something any automated
testing environment has to reckon with, it is also understood well
enough that tools have evolved to help deal with this challenge.

Tox8 is a tool that was created with the aim to standardize the
testing e�ort for Python projects. Tox has been designed in a way
that makes it continuous integration ready, while still being able to
support a wide variety of testing practices. It o�ers great �exibility
to developers in specifying how they want their projects to be
tested. Tox allows the user to create a con�g �le for the project that
allows the developer to specify the package dependencies that must
be ful�lled to test the project, the various versions of the Python
interpreter that the project needs to be tested against, and allows
the user to di�erentially specify tests that must be run against each
target.

Given the popularity of the tox project, it became a natural choice
for Revelio. Revelio has a simple strategy for running tests: for a
project that has a tox.ini �le in the repository, use it as is; for a
project that doesn’t have one, create one on a best-e�ort basis by
�lling in details in a template con�g �le. A sample tox.ini �le is
as described in Figure:

There are several details that need to be considered to �ll in the
template �le:

(1) Python Interpreters: A project might support multiple
Python environments. A project usually speci�es the Python
environments that it is designed for in its setup.py �le that
is used by distutils to install the project. If this informa-
tion is not found in the setup.py �le, it defaults to using
[’py35’,’py27’,’py26’,’py32’,’py33’,’py36’]

(2) Requirements andConstraints Files:Aprojectmay spec-
ify several requirements and constraint �les that are usually
scattered throughout the project hierarchy. The developer
might have several reasons for creating multiple require-
ments �les, and they might be used for executing di�erent
test suites. The uncertainty in knowing how to use these �les
poses an interesting challenge while creating the tox.ini
�le. Revelio merges all requirements and constraint �les it

5https://docs.pytest.org/en/latest/index.html
6http://nose.readthedocs.io/en/latest/
7https://docs.python.org/2/library/unittest.html
8https://tox.readthedocs.io/en/latest/

https://maven.apache.org/
https://pypi.python.org/pypi/pip
https://docs.pytest.org/en/latest/index.html
http://nose.readthedocs.io/en/latest/
https://docs.python.org/2/library/unittest.html
https://tox.readthedocs.io/en/latest/

Final Report CPSC 507, 2018, Vancouver, Canada Anna Scholtz, Puneet Mehrotra, and Gleb Naumenko

1 [tox]
2 i g n o r e _ e r r o r s = True
3 e n v l o g d i r = { envd i r } / l og
4 ignoreoutcome = True
5 e n v l i s t = py35 , py36
6 s k i p _m i s s i n g _ i n t e r p r e t e r s = True
7
8 [t e s t e n v]
9 s e t env =
10 PYTHONPATH = { t o x i n i d i r } : { t o x i n i d i r } /
11 w h i t e l i s t _ e x t e r n a l s = / us r / b in / env
12 ins t a l l _ command = / us r / b in / env LANG=C . UTF�8 p ip

i n s t a l l { op t s } { packages }
13 commands =
14 py . t e s t �� t imeou t =9 ��du r a t i o n =10 ��cov ��cov�

r e p o r t = { po sa rg s }
15 deps =
16 �r / home / p r o j e c t / r equ i r ement s �merged . t x t
17 �c / home / p r o j e c t / p a c k a g e _ c o n s t r a i n t s . t x t

Listing 3: Sample tox.ini �le

discovers in the project hierarchy, and for any inconsisten-
cies in the version numbers for packages, it selects the lower
version.

(3) Python Path for the Project: This is the root location
where the main source code is located in the project hierar-
chy. It is used because often tests are de�ned inside some
subdirectory and expect the Python path to be set accord-
ingly. We currently do not handle the scenario where tests
are not de�ned in the project base directory.

(4) Test Runners: A test runner is a framework for executing
tests for a project. The test runners that Revelio has been
tuned for are pytest, nose and unittest. Revelio utilizes the
common underlying mechanism that all test runners utilize
pytests and nose work by �nding tests that subclass unittest.
This also presents an interesting property that is utilized by
Revelio: pytest and nose can be used interchangeably to run
the tests. Given this equivalence, Revelio tries to use pytest
to run the tests. If the tests cannot be run, the errors are
logged and later shown to the user.

If no tests were discovered in the project hierarchy, we �ag the
same to the user. We believe this is important to do since, given the
absence of tests, there is no way to analyze the correctness of �xes
provided by Revelio. In this case, we cannot vouch for the validity
of the patch and whether the tests will pass on applying it. Our
warning to the user serves as a disclaimer to this e�ect.

2.2 Demonstration
In the following, we will demonstrate the command-line interface
and the Sublime Text plugin of Revelio.

2.2.1 Command-line Interface. The command-line interface for
Revelio is shown in Figure 2. In this example Revelio was used to
analyze a GitHub repository and to generate an HTML report with
the results as shown in Figure 4. The results are also printed out on
the command-line. Reports contain information about the location
of the vulnerability in the code, the reason for why it might be
insecure, a severity level and a suggested alternative. Additionally,
information about vulnerable or outdated dependencies is provided

and an overview of how many tests successfully executed after safe
alternatives and updates were applied. For the example in Figure 2,
no tests were available and all dependencies were up to date. Also,
Revelio could not detect any vulnerable dependencies.

Figure 2: Revelios command-line interface

2.2.2 Sublime Text Plugin. The Sublime Text 3 plugin was de-
veloped as a part of the Revelio tool. In the current implementation,
the plugin has 3 functions: highlighting security vulnerabilities in
the code, displaying details related to the selected vulnerability and
replacing vulnerable functions with secure alternatives. There are 2
types of highlighting implemented in the plugin. Critical dependen-
cies are highlighted with a red frame (see Figure 3 line 25), others
are highlighted with a white frame (see Figure 3 line 34).

Figure 3: Sublime Text Plugin

Information related to the vulnerability is shown by hovering
over a vulnerability. Displayed details include the vulnerability
type, reason, safe alternatives and the severity. There are 3 short-
cuts introduced to help developers replace vulnerable functions
automatically: replace the selected vulnerability, replace all occur-
rences of the vulnerability in the �le and replace all vulnerabilities
in the �le.

Detection and Mitigation of Security Vulnerabilities Final Report CPSC 507, 2018, Vancouver, Canada

Figure 4: Extract of a HTML report created after the analysis

2.3 Limitations
2.3.1 Python 3 Support. Currently, Revelio is written in Python

3 and only supports analysis of projects written in Python 3. This
might pose a problem for older projects.

2.3.2 AST Forma�ing. Revelio translates Python code into the
corresponding Python AST. All operation, such as replacing vul-
nerabilities, are executed on the AST. After the analysis, the AST
is written back as Python code into the original �le. However, for
some cases, the formatting of the Python code is di�erent from the
original formatting written by the developers because the format-
ting is automatically generated by the Python ast library which
might follow di�erent formatting rules.

2.3.3 Manually Maintaining the Database. The databases for
insecure functions and dependencies with vulnerabilities are main-
tainedmanually. Vulnerabilities were collected from di�erent security-
related websites [1] [3] [7] [8]. Safety DB is updated once per month
but needs to be manually synced with Revelio. Therefore, Revelio
might not be able to detect all existing or the most recent vulnera-
bilities.

2.3.4 Usage Context. Revelio does not consider the context in
which a vulnerable function is used. Some of the functions pose a
security threat only in certain contexts. For example, hashlib.md5
would be safe to use for comparing �les but not safe in the context
of hashing and storing passwords. However, Revelio �ags both
usages as unsafe and suggests alternatives.

2.3.5 Test Dependencies. Revelio can detect and automatically
execute available tests in Python. However, often projects have
other external dependencies that are not Python dependencies. For
example, some projects required cmake to successfully run and
execute tests. If not installed, none of the tests can be executed. We
ran our pull request study in a Docker container that had the most
commonly used dependencies installed. However, most projects
depended on very speci�c tools that were not installed, thus, most
tests could not be executed.

2.3.6 IDE Integration. The Sublime Text plugin currently sup-
ports only a subset of the features of the command-line tool. Cur-
rently, it is not possible to automatically execute tests or to update
outdated dependencies because both require a signi�cant amount
of time and would slow down developers.

3 EVALUATION
To answer our research questions and evaluate Revelio we con-
ducted a pull request study and a user survey. We will �rst describe
the execution of both studies and then present the results which
will answer our research questions.

3.1 Pull Request Study
To evaluate Revelio we analyzed the top 100 and the top 900-1000
Python projects on GitHub. These projects have a large user base,
are actively maintained and security vulnerabilities or stale depen-
dencies will have a negative impact on a large number of people
and systems. Our goal was to determine how many of the popu-
lar Python projects pose security risks and if there is a di�erence
between very and less popular repositories. Revelio cloned each
repository, analyzed them for vulnerable dependencies and func-
tions, replaced vulnerabilities with safe alternatives, ran tests and
created a pull request with the modi�ed �les and the report. For
the evaluation, we decided to send the pull request only for criti-
cal security issues since the security threat of less severe detected
vulnerabilities heavily depends on the usage context.

3.2 User Study
To assess the utility of our Sublime Text plugin and to answer R5,
we interviewed 7 developers about their experience in writing se-
cure code in Python. To better understand their experience with
the domain, we asked some preliminary questions that probed the
participants about their expertise in analyzing code for security
�aws. The interview also sought to examine the work�ow develop-
ers use to update their knowledge about the fast-moving space of
security, and the information sources they consult to do the same.

After the initial round of questioning to establish basic facts
about the participants, we asked the developers to read a code
snippet and try to �nd vulnerabilities. We had constructed a 50

Final Report CPSC 507, 2018, Vancouver, Canada Anna Scholtz, Puneet Mehrotra, and Gleb Naumenko

line code snippet9 for this task and had included 5 unsafe function
calls. The participants were provided a simple text editor for this
task, and no tooltips were available to help them reason about the
validity of their reasoning. The participants were not allowed to
consult online resources either.

Next, we explained to the participants the way Revelio plugin for
Sublime Text works and how it indicates the vulnerabilities in their
code, and the messages it displays for every vulnerability it �nds.
We asked the developers about their experience using the plugin
and asked them questions about how it �ts with their work�ows,
and what changes might make them adopt it.

3.3 Results and Discussion
3.3.1 R2: How many popular projects have dependencies that

pose security risks? To answer R2, Table 1 shows the results of our
study. Overall, most of the detected vulnerabilities were less severe.
In total, 6 repositories of the top 100 and 8 of the top 900-1000
Python projects had critical vulnerabilities. While the number of
vulnerabilities was slightly lower for top 100 projects, the di�erence
is not very signi�cant.

#Less-critical
vulnerable
functions
(#repos)

#Critical
vulnerable
functions
(#repos)

#Vulnerable im-
ports

Total 103 (40) 41 (14) 182
Top 100 55 (18) 17 (6) 62
Top 900-1000 58 (22) 24 (8) 103

Table 1: Number of vulnerabilities in GitHub projects. The
�rst number indicates the total number of occurrences. The
number in parantheses indicates how many projects were
a�ected.

3.3.2 R3: What are the most commonly detected vulnerabilities?
Next, we analyzed the most common insecure functions that were
used in order to answer R3. The results are shown in Table 2.
exec and eval were detected most often. Both functions execute
Python code that can be passed as a string parameter. However,
this might allow execution of malicious code. hashlib.sha1 and
hashlib.md5 can also pose a critical security vulnerability when
used in the context of password encryption. Throughmanual inspec-
tion, we discovered that this was the case for one project. The other
projects use it, for example, to create hashes of �les check if they are
the same. We deleted the pull requests to these projects since they
pose no security threats in these cases. yaml.load, pickle.load
and cPickle.load are used to read, serialize and deserialize text
from �les. These functions do not provide strong separation of
data and code, and thus allow code to be embedded inside the in-
put [1]. However, some of these libraries provide methods such as
yaml.safe_load.

3.3.3 R4: How many of the suggested changes were developers
willing to implement? Revelio created pull requests for all reposito-
ries with critical vulnerabilities. However, after manual inspection,
9https://github.com/scholtzan/cpsc-507/blob/master/userstudy/small-example.py

#in top 100 #in top 900-1000
exec (warning) 21 16
eval (warning) 9 20
hashlib.sha1 (critical) 5 14
pickle.load (warning) 11 18
hashlib.md5 (critical) 3 8
yaml.load (critical) 9 2
cPickle.load (warning) 2 0
tempfile.mktemp (critical) 0 1

Table 2: Most common vulnerabilities that Revelio detected

we deleted six pull requests. All of these �agged and replaced the us-
age of hashlib.sha1 or hashlib.md5, however, the usage was not
in a security critical context, such as a login or storage of passwords.
We collected the status of the pull requests as well as comments
after a duration of 10 days. Table 3 gives an overview of the security
vulnerabilities in the remaining pull requests.

Project Vulnerabilities Status after
10 days

https://github.com/localstack/
localstack

yaml.load,
hashlib.sha1,
exec

Merged

https://github.com/
facebookresearch/Detectron

pickle.load,
yaml.load,
cPickle.load

Pending

https://github.com/tensor�ow/
magenta

yaml.load, exec,
hashlib.sha1

Assigned to
reviewer

https://github.com/youfou/wxpy hashlib.sha1 Pending
https://github.com/pallets/click tempfile.mktemp,

eval
Pending

https://github.com/darknessomi/
musicbox

hashlib.md5 Pending

https://github.com/openai/
universe

yaml.load Pending

https://github.com/nltk/nltk yaml.load,
pickle.load,
exec, eval

2 thumbs up,
sticky issue

Table 3: Results of the pull request study

Two of the analyzed repositories used hashlib.md5 as well as
hashlib.sha1 to hash passwords, however for these projects were
no responses to the pull requests received. Our modi�ed �les did not
break any tests that were executed after the changes were pushed
to GitHub.

For investigating R4, we analyzed the comments and reactions
we received on Revelios pull requests. All of them were positive.
Developers of one project even suggested alternatives for exec and
eval: “Regarding eval(), I agree that there should be a better way
to read the data and an alternative would be to use literal_eval() to
evaluate strings”

Although the projects have between 5 to 231 contributors, not
all pull requests got responses within 10 days. The average time
between creating a pull request to merging was between 2 to 24
days for the eight projects. Since no pull request was rejected, it is
quite possible that it might get merged after the study ended.

https://github.com/scholtzan/cpsc-507/blob/master/userstudy/small-example.py
https://github.com/localstack/localstack
https://github.com/localstack/localstack
https://github.com/facebookresearch/Detectron
https://github.com/facebookresearch/Detectron
https://github.com/tensorflow/magenta
https://github.com/tensorflow/magenta
https://github.com/youfou/wxpy
https://github.com/pallets/click
https://github.com/darknessomi/musicbox
https://github.com/darknessomi/musicbox
https://github.com/openai/universe
https://github.com/openai/universe
https://github.com/nltk/nltk

Detection and Mitigation of Security Vulnerabilities Final Report CPSC 507, 2018, Vancouver, Canada

Overall, one pull request was merged, for another project a sticky
issue was created in order to �nd �xes for security vulnerabilities
that Revelio detected but did not have safe alternatives for. Another
pull request was assigned to a reviewer but did not get merged
within 10 days. All in all, we think that developers found the auto-
matically created pull requests quite useful and are not objected to
merging them into their code.

3.3.4 R1: Can static or dynamic analysis be used to detect vulner-
abilities and to verify if the code still runs a�er an update or modifi-
cation? To answer R1, as shown in our prior evaluation, Revelio is
able to detect all functions and dependencies that are considered
as insecure and stored in the databases using static analysis. How-
ever, as mentioned before, some functions like weak cryptographic
functions might be safe to use, for example in non-cryptographic
contexts. These functions are still �agged as vulnerabilities which
results in a relatively high false positive rate for certain vulner-
abilities. For instance, in our pull request study, pull requests of
six projects out of 14 were removed since they used weak crypto-
graphic functions in safe contexts. Although the false positive rate
might be high, we believe that it is still valuable for developers to
be aware of potential security issues.

Revelio can also dynamically verify whether the code is still
running after updating dependencies or replacing vulnerable func-
tions. However, for this projects need to provide tests that conform
to the format described in Section 2.1.5. Also, tests might fail to
run if other required dependencies are not installed. For our study,
most tests could not be executed since they relied on other external
dependencies that were not installed by default.

3.3.5 R5: How useful do developers find the IDE plugin while
writing code? Most participants we interviewed, as shown in Ta-
ble 4, either did not care about security vulnerabilities in their
code [HG,LC,AJ,FR], or relied on a formal code review process
[LP,ND,VK] to become aware of them. The participants who cared
less about security were academics and revealed that they cared
less because their code was primarily used for research prototypes.
The participants did not have a well-de�ned source of information
when it came to checking for new vulnerabilities, and they relied on
transparent and non-disruptive library upgrades, or some explicit
noti�cation (like a review comment or pull request) to take notice
of the defect [FR,ND,VK,LP]. All participants preferred directed
comments about speci�c items to change in code, than generic
advice about scanning for vulnerabilities.

The number of vulnerabilities participants identi�ed is men-
tioned in Table 4. Depending on their experience with the language,
the participants spent varying amounts of time analyzing the code.
The most commonly identi�ed vulnerability was the use of md5
hashing to save passwords (all participants other than LC were able
to identify this), and none of the participants managed to identify
the yaml.load vulnerability.

All participants liked the Sublime Text plugin as it helped to
con�rm or dispel doubts about the code they were inspecting and
in general were favorable of the idea to use a static analysis tool to
highlight potential security vulnerabilities in code. All participants
agreed strongly to the utility of having such a tool available to them
either as an IDE plugin or as part of a pre-commit lint checker.

When asked about potential improvements to the tool, most
participants wanted some form of integration with DevOps tools
like pre-commit lint checking [ND,FR,LP,AJ,VK]. Another common
ask was to have the ability to dismiss warnings and prevent certain
kinds of warnings from being �agged [HG,LC,AJ]. Some developers
had concerns about the e�ort involved in updating the vulnerability
list [FR,AJ], and indicated the scenario for having a self-updating
vulnerability database.

4 THREATS TO VALIDITY
(1) Most of our participants in the user study work in academia.

Academics are less concerned (con�rmed through the user
study) with the implications of insecure code and have less
experience. The results might be di�erent for developers
working in industry. None of the participants have any spe-
cialized experience dealing with security issues in software.
This we believe this is the norm, and therefore should not
impact the generalizability of our results.

(2) None of the people we interviewed for the user study was
very experienced in writing production-ready Python code.
This can impact the validity of our claim regarding the utility
of this tool. However, we believe that even for experienced
developers, having a handy resource that veri�es their code
against a CVE database is useful and can help them scan for
vulnerabilities that they are not abreast of, or might forget
to look for.

(3) There is a lot of variation among Python projects in the loca-
tion and mechanism of test scripts. This can make it di�cult
to run the test from the tox environment. Also, some python
packages needed by the projects we analyzed had dependen-
cies that needed compiling in special ways - some packages
had C bindings that needed to be compiled. We made a best-
e�ort installation e�ort to get all the dependencies ready
for testing the project, however, for most projects could not
be executed. While this does not have a direct in�uence on
detecting vulnerabilities, it might have had a minor impact
on the pull-request study. Not all of the projects had con-
tinuous integration set up. Project maintainer might have
been reluctant to merge the changes if they did not know
whether the code would break. However, for the project that
automatically ran tests after pushing code, all of the tests
succeeded.

(4) We only selected 200 relatively popular Python projects from
GitHub. To get more representative results a much larger
number of projects would be necessary. However, we believe
that this number already gives a good indication of whether
our tool might help developers in detecting vulnerabilities.

(5) Our toolmarks functions as potential vulnerabilities although
they might not pose a security threat in the context they
are used. An example for this is hashlib.md5 as discussed
earlier. This might have resulted in many false positives.
Nevertheless, we think it is still good to know for developers
that they use functions that might result in vulnerabilities.
This way they can make sure that they actually use these
function safely.

Final Report CPSC 507, 2018, Vancouver, Canada Anna Scholtz, Puneet Mehrotra, and Gleb Naumenko

Developer Age Job Title Pro�ciency
in Python

Domain ex-
pertise

Number
of vulner-
abilities
identi�ed

Utility of the
tool

Usability of
the tool

Will you use
it?

HG 24 Graduate
Student

3 2 3 4 5 2

LC 23 Undergraduate
Student

2 1 0 5 5 3

AJ 26 Graduate
Student

2 2 4 4 5 4

FR 25 Graduate
Student

3 2 4 4 5 4

LP* 29 Solutions
Integration
Engineer, JDA
Software

2 1 1 5 5 3

ND* 28 Member of
Technical Sta�,
NetApp

4 3 4 3 5 4

VK* 28 Technology
Associate,
Goldman Sachs

4 2 2 4 5 4

Table 4: User demographics data. Participants marked with an asterix(*) were interviewed remotely over Skype. The ratings
are on a scale of 1 to 5, where 1 is the worst and 5 is the best possible score for that question.

5 RELATEDWORK
There has been a lot of prior work in analyzing developer response
to pull request style noti�cations to update dependencies in their
projects and many empirical studies on awareness and perception
of security vulnerabilities. There has also been some prior work
that analyzes the impact of dependency management systems and
software ecosystems on the ease of managing vulnerable depen-
dencies.

5.1 Awareness of Outdated Dependencies and
Security Vulnerabilities

Currently, there exist a few tools that automatically check code
for outdated or vulnerable dependencies. Requires.io10 sends no-
ti�cations if a Python dependency is expired. It monitors GitHub
repositories, however, a free plan is only available for using public
repositories. All security advisories are con�rmed manually and it
does not provide the possibility to update outdated dependencies.

Greenkeeper.io11 updates npm dependencies of Github JavaScript
projects in real-time. It runs tests and noti�es when the code breaks.
Greenkeeper.io o�ers several pricing plans however no free version
is available.

GitHub provides badges12 that can be included in the project
description and indicate, for example, if the project uses outdated
dependencies or fails to compile. While this gives some indication
to users and developers, it does not actively try to �x these issues.

Our developed tool o�ers a command-line interface as well as
an IDE integration to analyze locally stored Python projects as
well as repositories on Github. Dependencies get updated and the

10https://requires.io/
11https://greenkeeper.io/
12https://github.com/badges

developer will see whether the updated code is broken by running
all unit tests. In addition to dynamically checking whether the code
breaks our tool also employ static analysis to check where unsafe
or deprecated methods are used.

5.2 Impact of Automated Pull Request
Mechanisms

There have been previous studies that have examined the impact of
automated pull requests on the chances that the developer might in-
corporate suggestions for updating dependencies [17]. In their work,
Mirhosseini et.al analyzed several GitHub projects to observe if the
use of badges, automated pull requests and noti�cations had any
change in the upgrade behavior. Their results �nd that projects that
use these automated mechanisms have a higher upgrade turnover.
This work is based on an empirical study that does not di�erentiate
between security vulnerabilities in code and out-dated libraries
a project uses. By providing updates via pull-requests, Revelio is
useful for developers to upgrade their project dependencies as well
as keep their code safe and up-to-date.

6 FUTUREWORK
6.1 Accuracy
As it was mentioned in Section 3, the current implementation of
Revelio has a high rate of false positives for certain functions. Recent
studies have shown that false positives might dramatically a�ect
user experience and encourage developers to disable tools [19] [18].
As for Revelio, one of the most obvious causes of false positives
is the use of weak cryptographic functions in non-cryptographic
contexts (for example, md5 for internal checksums). We see two
ways of solving this problem: �rst, more sophisticated static analysis
to identify which warnings can be ignored could be implemented.

https://requires.io/
https://greenkeeper.io/
https://github.com/badges

Detection and Mitigation of Security Vulnerabilities Final Report CPSC 507, 2018, Vancouver, Canada

Second, Revelio could introduce a user interface or an annotation-
based notation to developers allowing them to disable warnings in
a particular context.

6.2 Support of Python 2 and Python 3
Currently, only Python 3 projects can be analyzed. In the future
it would be useful to also provide support for Python 2 projects.
This would allow to analyze older projects that might have more
vulnerabilities than newer projects.

6.3 Managing Vulnerabilities
In the current implementation the vulnerability databases have to
be managed manually. For this we extracted known vulnerabilities
from di�erent websites. For future versions it might be valuable
to automatically extract potential vulnerabilities from websites or
other sources. However, solving this problemmight be very di�cult
since vulnerabilities are mostly described using natural language.

6.4 Support Other Environments
While Revelio only supports the analysis of Python projects at
the moment, we believe that it would be helpful for other envi-
ronments, too. However, having support for projects written in
other programming languages would require a lot of changes in the
current implementation of Revelio. Also executing tests or retriev-
ing dependencies is very speci�c for each programming language.
Nevertheless, many concepts Revelio is based on could be reused
to develop a more advanced version for supporting other environ-
ments. Additionally, some participants of our user study mentioned
that Revelio would be useful as part of a continous integration
pipeline.

6.5 IDE Improvements
Our user survey revealed a few improvements users would like
to see in the Sublime Text plugin. One is to be able to manually
dismiss warnings or to indicate warnings in the scroll bar of Sublime
Text for easier navigation. Additionally, it might be useful to be
able to execute tests from Sublime Text and to update outdated
dependendencies.

7 CONCLUSION
Developing and maintaining secure programs is a challenge, due
to the big e�ort and cyber security knowledge required. Our study
showed that vulnerabilities are present in popular projects on
GitHub. To help developers, we designed a tool Revelio, which
detects vulnerabilities in Python code, provides safe alternatives
and updates outdated dependencies. Automatically generated pull-
requests submitted via Revelio to various GitHub repositories �xing
security issues were appreciated by developers. A user survey of
the Sublime Text plugin has shown that developers �nd it useful
and easy to use for �nding vulnerable functions while writing code.

We think that answers to the research questions in this study are
valuable for tools to maintain low-level software design awareness
as well as for tools for detection and mitigation of vulnerabilities.
Our code is published on: https://github.com/scholtzan/cpsc-507

REFERENCES
[1] Avoid dangerous �le parsing and object serialization libraries. https://security.

openstack.org/guidelines/dg_avoid-dangerous-input-parsing-libraries.html.
[2] Changing standard (python) test discovery. https://docs.pytest.org/en/latest/

example/pythoncollection.html.
[3] Cve details - python. https://www.cvedetails.com/vulnerability-list/vendor_

id-10210/product_id-18230/Python-Python.html.
[4] nose - �nding and running tests. http://nose.readthedocs.io/en/latest/�nding_

tests.html.
[5] Python projects on github. https://github.com/search?l=Python&q=language%

3APython&ref=advsearch&type=Repositories&utf8=%E2%9C%93.
[6] Safety db. https://github.com/pyupio/safety-db.
[7] Security tracker - python. https://securitytracker.com/archives/target/1631.html.
[8] Stackover�ow - exploitable python functions. https://stackover�ow.com/

questions/4207485/exploitable-python-functions.
[9] Sublime text. https://www.sublimetext.com/.
[10] Data breach costs will soar to $2t: Juniper. http://news.cuna.org/articles/

105948-data-breach-costs-will-soar-to-2t-juniper, 2015.
[11] Cloudpassage study �nds u.s. universities failing in cybersecurity

education. https://www.cloudpassage.com/company/press-releases/
cloudpassage-study-�nds-u-s-universities-failing-cybersecurity-education/,
2016.

[12] Top 4 common web security vulnerabilities. https://themerkle.com/
top-4-common-web-security-vulnerabilities/, 2017.

[13] Vigilante.pw - the breached database directory. https://www.vigilante.pw/, 2018.
[14] J. Buchmann and J. Ding. Post-Quantum Cryptography: Second International

Workshop, PQCrypto 2008 Cincinnati, OH, USA October 17-19, 2008 Proceedings,
volume 5299. Springer Science & Business Media, 2008.

[15] R. G. Kula, D. M. German, A. Ouni, T. Ishio, and K. Inoue. Do developers update
their library dependencies? Empirical Software Engineering, 23(1):384–417, 2018.

[16] K. Lab. Damage control: The cost of security breaches it secu-
rity risks special report series. https://media.kaspersky.com/pdf/
it-risks-survey-report-cost-of-security-breaches.pdf, 2017.

[17] S. Mirhosseini and C. Parnin. Can automated pull requests encourage software
developers to upgrade out-of-date dependencies? In Proceedings of the 32Nd
IEEE/ACM International Conference on Automated Software Engineering, ASE 2017,
pages 84–94, Piscataway, NJ, USA, 2017. IEEE Press.

[18] T. Muske and U. P. Khedker. E�cient elimination of false positives using static
analysis. In Software Reliability Engineering (ISSRE), 2015 IEEE 26th International
Symposium on, pages 270–280. IEEE, 2015.

[19] J. Park, I. Lim, and S. Ryu. Battles with false positives in static analysis of
javascript web applications in the wild. In Software Engineering Companion
(ICSE-C), IEEE/ACM International Conference on, pages 61–70. IEEE, 2016.

https://github.com/scholtzan/cpsc-507
https://security.openstack.org/guidelines/dg_avoid-dangerous-input-parsing-libraries.html
https://security.openstack.org/guidelines/dg_avoid-dangerous-input-parsing-libraries.html
https://docs.pytest.org/en/latest/example/pythoncollection.html
https://docs.pytest.org/en/latest/example/pythoncollection.html
https://www.cvedetails.com/vulnerability-list/vendor_id-10210/product_id-18230/Python-Python.html
https://www.cvedetails.com/vulnerability-list/vendor_id-10210/product_id-18230/Python-Python.html
http://nose.readthedocs.io/en/latest/finding_tests.html
http://nose.readthedocs.io/en/latest/finding_tests.html
https://github.com/search?l=Python&q=language%3APython&ref=advsearch&type=Repositories&utf8=%E2%9C%93
https://github.com/search?l=Python&q=language%3APython&ref=advsearch&type=Repositories&utf8=%E2%9C%93
https://github.com/pyupio/safety-db
https://securitytracker.com/archives/target/1631.html
https://stackoverflow.com/questions/4207485/exploitable-python-functions
https://stackoverflow.com/questions/4207485/exploitable-python-functions
https://www.sublimetext.com/
http://news.cuna.org/articles/105948-data-breach-costs-will-soar-to-2t-juniper
http://news.cuna.org/articles/105948-data-breach-costs-will-soar-to-2t-juniper
https://www.cloudpassage.com/company/press-releases/cloudpassage-study-finds-u-s-universities-failing-cybersecurity-education/
https://www.cloudpassage.com/company/press-releases/cloudpassage-study-finds-u-s-universities-failing-cybersecurity-education/
https://themerkle.com/top-4-common-web-security-vulnerabilities/
https://themerkle.com/top-4-common-web-security-vulnerabilities/
https://www.vigilante.pw/
https://media.kaspersky.com/pdf/it-risks-survey-report-cost-of-security-breaches.pdf
https://media.kaspersky.com/pdf/it-risks-survey-report-cost-of-security-breaches.pdf

	Abstract
	1 Introduction
	2 Revelio
	2.1 Implementation
	2.2 Demonstration
	2.3 Limitations

	3 Evaluation
	3.1 Pull Request Study
	3.2 User Study
	3.3 Results and Discussion

	4 Threats to Validity
	5 Related Work
	5.1 Awareness of Outdated Dependencies and Security Vulnerabilities
	5.2 Impact of Automated Pull Request Mechanisms

	6 Future Work
	6.1 Accuracy
	6.2 Support of Python 2 and Python 3
	6.3 Managing Vulnerabilities
	6.4 Support Other Environments
	6.5 IDE Improvements

	7 Conclusion
	References

