
Smooth Kronecker

- Vaastav Anand
- Puneet Mehrotra
- Daniel Margo
- Margo Seltzer

Graph Systems have taken over the world

● Graph Data is everywhere

● Exponential growth in research of
distributed graph processing systems
since Pregel (2010)

● Graph Processing Systems must scale
to very large graphs

2

Widely used graphs are small

3

Dataset # Vertices # Edges Size Device whose memory dataset will fit in

cit-Patents ~3.7M ~16.5M 289MB iPhone 4

soc-LiveJournal ~4.8M ~68.9M 1.1GB iPhone 7

Twitter-2010 ~41M ~1.4B 26GB Our advisor’s
 laptop

Kronecker Generators save the day

● R-Mat and Kronecker Graph generators have been popularly used for generating
large graphs.

● They are easy to use and highly parallelizable which makes them perfect as the
data source for scalability experiments.

● Edges in the graph are generated according to a 2 x 2 seed distribution where
each element in the distribution approximately corresponds to the fraction of edges
in a particular quadrant of the adjacency matrix of the graph.

4

Do they really save the day?

Kronecker Graph generators suffer from 2 major
problems that make them inappropriate for
scalability benchmarking of graph processing
systems

● The degree distributions of Kronecker
graphs are combed, unlike any real graph

● As scale increases, so does the fraction of
0-degree vertices.

● Implication: a scale of 30 produces a
graph with only 400M non-0 degree
vertices, not the expected 1 Billion

5

Which one of these is not like the others?

6

Twitter-2010 Cit-Patents

Kronecker (Snap)Soc-Livejournal

Which one of these is not like the others?

7

Twitter-2010 Cit-Patents

Kronecker (Snap)Soc-Livejournal

Degree distribution combing is pervasive

8

Snap-KronGraph500

TrillionG

Adding Noise

● Seshadhri et al. proposed smoothing by
blurring kronecker iterations with uniform
random noise.

● It is not completely obvious how much noise
to add

● Adding too much noise can be catastrophic
as it can drastically affect the partitionability
of the graph.

9

Smooth Kronecker Generator

Problems with using the Kronecker-generated graphs for benchmarking

● The Kronecker model follows a reasonable degree distribution; however it is
undersampled as each vertex’s degree is determined by the non-unique sum of
its binary representation.

● For Noisy Kronecker, the vertex degrees vary normally around the undersampled
model, instead of sampling the correct underlying model.

Solution:

● Resample a different small distribution from the correct underlying model and mix
it with the original 2x2 seed to smoothen the undersampling.

10

The Kronecker Product

● Mathematically, it is a product between two
matrices where each element in a matrix is
multiplied with the whole other matrix.

11

Kronecker multiplication in 1-Dimension

12

a b

a2 ab ba b2

a3 a2b a2b ab2 ba2 b2a b2a b3

Resampling in 1-Dimension

13

a2 ab ba b2

x y z

● To resample the initial 1x2 seed [a,b]
as a 1x3 seed [x,y,z], we sample the
leftmost third (x), the middle third (y),
and the rightmost third (z) as the
Kronecker product reaches infinity.

● For the leftmost third, i.e. x, the value
is just the geometric series with initial
term aa and ratio ab.

● For the rightmost third, i.e. z, the value
is just the geometric series with initial
term bb and ratio ab

● y is simply calculated as 1-x-z.

2x2 Seed Resampling

● We now need to resample a 2x2 seed
as a 3x3 seed.

● We follow the same idea from the 1D
sampling where we sample each
element of the 3x3 seed as the
Kronecker product of the 2x2 seed
goes to infinity.

● For eg: The first element is sampled as
the leftmost corner goes to infinity.

14

Smooth Kronecker Algorithm

1. Given a 2x2 seed, number of edges,
scalefactor2 and scalefactor3, first resample a
3x3 seed.

● Scalefactor2 and scalefactor3
collectively decide the number of
vertices in the matrix.

● The total number of vertices is given
by 2scalefactor2 * 3scalefactor3.

● Generate an edge using scalefactor2
+ scalefactor3 Kronecker iterations.

15

a b
c d

2 x 2 Seed

r s t
u v w
x y z

3 x 3 Seed

Smooth Kronecker Algorithm

1. Given a 2x2 seed, number of edges,
scalefactor2 and scalefactor3, first resample a
3x3 seed.

2. For each edge: randomly determine which
seed will be used for sampling at every
Kronecker iteration.

● E.g., For scalefactor2=4 and
scalefactor3=2, one possible order is
shown on the right.

16

2

2

2

3

2

3

Iteration #1

Iteration #2

Iteration #3

Iteration #4

Iteration #5

Iteration #6

Smooth Kronecker Algorithm

1. Given a 2x2 seed, number of edges,
scalefactor2 and scalefactor3, first resample a
3x3 seed.

2. For each edge: randomly determine which
seed will be used for sampling at every
Kronecker iteration.

3. Recursively sample from the seed according
to the operation order to obtain the source and
destination of the edge.

17

2 3 2

Smooth Kronecker Algorithm

1. Given a 2x2 seed, number of edges,
scalefactor2 and scalefactor3, first resample a
3x3 seed.

2. For each edge: randomly determine which
seed will be used for sampling at every
Kronecker iteration.

3. Recursively sample from the seed according
to the operation order to obtain the source and
destination of the edge.

18

2 3 2 0
2 3

1

Smooth Kronecker Algorithm

1. Given a 2x2 seed, number of edges,
scalefactor2 and scalefactor3, first resample a
3x3 seed.

2. For each edge: randomly determine which
seed will be used for sampling at every
Kronecker iteration.

3. Recursively sample from the seed according
to the operation order to obtain the source and
destination of the edge.

19

2 3 2
0 1 2
3 4 5
6 7 8

Smooth Kronecker Algorithm

1. Given a 2x2 seed, number of edges,
scalefactor2 and scalefactor3, first resample a
3x3 seed.

2. For each edge: randomly determine which
seed will be used for sampling at every
Kronecker iteration.

3. Recursively sample from the seed according
to the operation order to obtain the source and
destination of the edge.

20

2 3 2 0
2 3

1

Smooth Kronecker looks like real graphs

21

Smooth Kronecker looks like real graphs

22

Twitter-2010 Cit-Patents

Smooth-KronSoc-Livejournal

Large Variety of Scales

● With Smooth Kronecker, we are no longer
restricted to powers of 2. Current implementation
supports number of vertices of the form 2x * 3y.

● To achieve smoothening of the degree distribution,
only 1 resampled seed is required.

● Smooth Kronecker provides finer control over the
number of vertices for potential scalability
experiments

● With other resamplings, other scales can also be
supported.

23

Smooth Kron to rule them all

24

Smooth Kron to rule them all

25

Smooth Kron to rule them all

26

Conclusion

● We strongly urge the community to use the
Smooth Kronecker Generator for generating
synthetic graphs.

● Smooth Kronecker Generator is open source
and available at
https://github.com/dmargo/smooth_kron_gen

27

“Decrease Noise Pollution,
Use Smooth Kronecker!”

https://github.com/dmargo/smooth_kron_gen

